人才隊伍2005.09-2009.07 山西師范大學 地理科學
2009.09-2012.07 福建師范大學 自然地理學
2012.09-2015.06 中國科學院沈陽應用生態(tài)研究所 土壤學
2013.09-2014.03 美國加州大學戴維斯分校 ?聯(lián)合培養(yǎng)博士
2015.07-2018.08 中國科學院沈陽應用生態(tài)研究所 助理研究員
2018.09-2020.11 中國科學院沈陽應用生態(tài)研究所 副研究員
2019.09-2020.02 美國西弗吉尼亞大學植物土壤學院 訪問學者
2020.12-至今 ???中國科學院沈陽應用生態(tài)研究所 研究員
土壤有機質(zhì)形成機理
微生物多樣性與功能
全球變化與森林碳匯
2015年獲得中國科學院院長特別獎
2016年獲得中國科學院百篇優(yōu)秀博士論文獎
2018年中國科學院青年創(chuàng)新促進會會員
2019年遼寧省百千萬人才“千”層次
2019年中國科學院西部東北地區(qū)人才項目
2022年中國科學院優(yōu)秀共產(chǎn)黨員稱號
2022年中國科學院青年創(chuàng)新促進會優(yōu)秀會員
重點研發(fā)國際合作項目:增溫對森林土壤碳匯功能的影響機制,2024-2026
自然基金委優(yōu)秀青年項目:土壤生物地球化學,2024-2026
自然基金委面上項目:從微生物生物周期角度分析增溫影響土壤有機碳周轉(zhuǎn)機制,2024-2027
中國科學院青促會優(yōu)秀會員項目:增溫對微生物死亡殘體的影響,2023-2025
中國科學院青年促進會項目:微生物死亡殘體形成與穩(wěn)定機制,2018-2021
長白山地理過程與生態(tài)重點實驗室開放課題:增溫對闊葉紅松林土壤微生物殘體分解的影響,2019-2020
中國科學院基礎(chǔ)前沿創(chuàng)新項目課題:土壤微生物特征對森林生態(tài)系統(tǒng)穩(wěn)定性的影響,2019-2023
中國科學院黑土專項任務(wù):作物根系水肥高效利用體系構(gòu)建和技術(shù),2021-2025
沈陽生態(tài)所自主重大任務(wù)子課題:東北陸地生態(tài)系統(tǒng)碳匯精準計量與提升技術(shù),2022-2025
國家基金委青年項目:森林土壤微生物殘體氮素周轉(zhuǎn)及其對土壤有機氮貢獻研究,2016-2019
[1]?Qu L, Wang C*, Manzoni S, Dacal M, Maestre FT, Bai E. (2024). Stronger compensatory thermal adaptation of soil microbial respiration with higher substrate availability. The ISME Journal. 10.1093/ismejo/wrae025.
[2]?Wang X, Wang C*, Fan X, Sun L, Sang C, Wang XG,?Jiang P, Fang YT, Bai E*. (2024). Mineral composition controls the stabilization of microbially derived carbon and nitrogen in soils: Insights from an isotope tracing model. Global Change Biology, 30, e17156.
[3]?Lyu M, Chen S, Zhang Q, Yang Z, Xie J, Wang C, Wang XH, Liu XF, Xiong DC, Xu Chao, Yang, Y. (2024). Rapid positive response of young trees growth to warming reverses nitrogen loss from subtropical soil. Functional Ecology. https://doi.org/10.1111/1365-2435.14526.
[4]?Wang C*, Wang X, Zhang Y, Morrissey E, Liu Y, Sun L,?Qu LR, Sang CP, Zhang H, Li GC*, Zhang LL,?Fang, Y. (2023). Integrating microbial community properties, biomass and necromass to predict cropland soil organic carbon. ISME Communications, 3, 86.
[5]?Walkup J, Dang C, Mau R L, Hayer M, Schwartz E, Stone BW,?Hofmockerl KS, Koch BJ, Purcell AM, Pett-Ridge J, Wang C, Hungate BA,?Morrissey EM*. (2023). The predictive power of phylogeny on growth rates in soil bacterial communities. ISME Communications, 3, 73.
[6]?Sun L*, Moorhead DL, Cui Y, Wanek W, Li S, Wang C. (2023). Exogenous nitrogen input skews estimate of microbial nitrogen use efficiency by ecoenzymatic stoichiometry. Ecological Processes, 12, 46.
[7]?Sun L, Li J, Qu L, Wang X, Sang C, Wang J, Wang C*. (2023). Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments. Geoderma, 432, 116416.
[8]?He P, Ling N, Lü XT, Zhang HY, Wang C, Wang RZ, Wei CZ, Yao J, Wang XB*, Han XG,?Nan, Z. (2023). Contributions of abundant and rare bacteria to soil multifunctionality depend on aridity and elevation. Applied Soil Ecology, 188, 104881.
[9]?Yu H, Duan Y, Mulder J, D?rsch P, Zhu?W, Xu R, Huang K, Zheng Z, Wang C, Zhu FF, Liu DW, Peng SS, Han SJ, Zhang YJ*,?Fang Y*. (2023). Universal temperature sensitivity of denitrification nitrogen losses in forest soils. Nature Climate Change, 13, 726-734.
[10]?Wang Z, Yang J, Wang C, Bai E. (2022). Oxygen gas derived oxygen does not affect the accuracy of 18O-labelled water approach for microbial carbon use efficiency. Soil Biology and Biochemistry, 168.108649
[11]?Cao YW. Liu XM, Wang C, Bai E, Wu N. (2022). Rare earth element geochemistry in soils along arid and semiarid grasslands in northern China. Ecological Processes, 11(1), 29.
[12]?Chang Q, Xu W, Peng B, Jiang P, Li S, Wang C, Bai E. (2022). Dynamic and allocation of recently assimilated carbon in Korean pine (Pinus koraiensis) and birch (Betula platyphylla) in a temperate forest. Biogeochemistry, 160, 395-407.
[13]?Wang C, Morrissey EM*, Mau RL., Hayer M, Pi?eiro JMack MC, Marks JC, Bell SL, Miller SN, Schwartz E, Dijkstra P, Koch BJ, Stone BW, Purcell AM, Blazewicz SJ, Hofmockel KS, Pett-Ridge J, Hungate BA, 2021. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. The ISME Journal, 15, 2738-2747.
[14]?Wang C, Qu, LR, Yang, LM, Morrissey, E, Miao RH, Liu ZP, Wang QK, Fang YT, Bai E*. 2021. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology?27, 2039-2048.
[15]?Li J, Sang C, Yang J, Qu L, Xia Z, Sun H, Jiang P, Wang X, He H, Wang C*, 2021. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biology and Biochemistry, 156, 108207.
[16]?Sun, L., Wang, C.*, Yu, H., Liu, D., Houlton, B. Z., Wang, S., Zeng, X*, Bai, E., Fang YT, Jia, Y. (2021). Biotic and abiotic controls on dinitrogen production in coastal sediments. Global Biogeochemical Cycles, 35, e2021GB007069.
[17]?Sang CP, Xia ZW*, Sun LF, Sun H, Jiang P, Wang C*, Bai E, 2021. Responses of soil microbial communities to freeze–thaw cycles in a Chinese temperate forest.?Ecological Processes, 10: 66
[18]?Dai W, Peng B, Liu J, Wang C, Wang X, Jiang P, Bai E, 2021. Four years of litter input manipulation changes soil microbial characteristics in a temperate mixed forest. Biogeochemistry, 154, 371-383.
[19]?Wang X, Dai W, Filley TR, Wang C, Bai E, 2021. Aboveground litter addition for five years changes the chemical composition of soil organic matter in a temperate deciduous forest. Soil Biology and Biochemistry, 161, 108381.
[20]?Fan X, Gao D, Zhao C, Wang C, Qu Y, Zhang J, Bai E*, 2021. Improved model simulation of soil carbon cycling by representing microbial-derived organic carbon pool. The ISME Journal, 15, 2248-2263.
[21]?Wang X, Wang C*,?Cotrufo MF, Sun L, Jiang P, Liu Z, Bai E*, 2020. Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover. Global Change Biology 26, 5277–5289.
[22]?Wang C, Wang X, Pei GT, Xia ZW, Peng B, Sun LF, Wang J, Gao DC, Chen SD, Liu DW, Dai WW, Jiang P, Fang YT, Liang C, Wu NP, Bai E*, 2020. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biology and Biochemistry?141, 107687.
[23]?Qu LR, Wang C*, Bai E*, 2020. Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency. Soil Biology and Biochemistry. 145, 107802.
[24]?Xia ZW, Yang JY, Sang CP, Wang X, Sun LF, Jiang P, Wang C*, Bai E, 2020. Phosphorus reduces negative effects of nitrogen addition on soil microbial communities and functions. Microorganisms?8, 1828.
[25]?Chang Q, Qu G, Xu W, Wang C,?Cheng W, Bai E*, 2020. Light availability controls rhizosphere priming effect of temperate forest trees. Soil Biology and Biochemistry?148, 107895.
[26]?Pei GT, Liu J, Peng B, Wang C, Jiang P, Bai E*, 2020. Non-linear coupling of carbon and nitrogen release during litter decomposition and its responses to nitrogen addition. Journal of Geophysical Research: Biogeosciences?125, e2019JG005462.
[27]?Houlton BZ*, Almaraz M, Aneja V, Austin AT, Bai E, Cassman KG, Compton JE, Davidson EA, Erisman JW, Galloway JN, Gu BJ, Yao G, Martinelli, LA, Scow K, Schlesinger WH, Tomich TP, Wang C, Zhang X, 2019. A World of Cobenefits: Solving the Global Nitrogen Challenge. Earth's Future?7, 865– 872.
[28]?Hou JF, Dijkstra FA, Zhang XW, Wang C, Lü XT, Wang P, Han XG, and Cheng WX*, 2019. Aridity thresholds of soil microbial metabolic indices along a 3,200 km transect across arid and semi-arid regions in Northern China, Peer J, 7, e6712.
[29]?Sun LF, Sang CP, Wang C, Fan ZZ, Peng B, Jiang P, and Xia ZW*, 2019. N2O production in the organic and mineral horizons of soil had different responses to increasing temperature, Journal of Soils and Sediments?19, 3499–3511.
[30]?Sun LF, Xia ZW, Sang CP, Wang X, Peng B, Wang C, Zhang J, Müller C, Bai E, 2019. Soil resource status affects the responses of nitrogen processes to changes in temperature and moisture. Biology and Fertility of Soils 55, 629-641.
[31]?Pei GT, Liu J, Peng B, Gao DC, Wang C, Dai WW, Jiang P, and Bai E*, 2019. Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem, Forest Ecology and Management?440, 61-69.
[32]?Peng B, Sun JF, Liu J, Dai WW, Sun LF, Pei GT, Gao DC, Wang C, Jiang P, Bai E*, 2019. N2O emission from a temperate forest soil during the freeze-thaw period: A mesocosm study. Science of The Total Environment?648, 350-357.
[33]?Feng J, Wei K, Chen Z, Lü XT, Tian JH, Wang C, and Chen LJ*, 2019. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: evidence from ecoenzymatic stoichiometry, Global Biogeochemical Cycles?33, 559-569.
[34]?Wang C, Houlton BZ, Liu DW, Hou JF, Cheng WX, Bai E*, 2018a. Stable isotopic constraints on global soil organic carbon turnover. Biogeosciences?15, 987-995.
[35]?Wang C, Liu DW, Bai E*, 2018b. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry?120, 126-133.
[36]?Almaraz M*, #, Bai E #, Wang C, Trousdell J, Conley S, Faloona I, Houlton BZ, 2018a. Agriculture is a major source of NOx pollution in California. Science Advances?4, eaao3477.
[37]?Almaraz M*, Bai E, Wang C, Trousdell J, Conley S, Faloona I, Houlton BZ, 2018b. Extrapolation of point measurements and fertilizer-only emission factors cannot capture statewide soil NOx emissions. Science Advances?4, eaau7373.
[38]?Feng J, Turner BL, Wei K, Tian JH, Chen Z, Lü XT, Wang C, Chen LJ*, 2018. Divergent composition and turnover of soil organic nitrogen along a climate gradient in arid and semiarid grasslands. Geoderma?327, 36-44.
[39]?Wang C, Houlton BZ, Dai, WW, Bai E*, 2017a. Growth in the global N2?sink attributed to N fertilizer inputs over 1860 to 2000. Science of The Total Environment?574, 1044-1053.
[40]?Wang C, Wei HW, Liu DW, Luo WT, Hou JF, Cheng WX, Han XG, Bai E*, 2017b. Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China. Plant and Soil?417, 43-52.
[41]?Liu DW, Zhu WX, Wang XB, Pan YP, Wang C, Xi D, Bai E, Wang Y, Han XG, Fang YT*, 2017. Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200?km transect. Biogeosciences?14, 989-1001.
[42]?Luo WT, Li MH, Sardans J, Lu XT, Wang C, Penuelas J, Wang ZW, Han XG, Jiang Y*, 2017. Carbon and nitrogen allocation shifts in plants and soils along aridity and fertility gradients in grasslands of China. Ecology and Evolution?7, 6927-6934.
[43]?Liu J, Wang C, Peng B, Xia ZW, Jiang P, Bai E*, 2017. Effect of nitrogen addition on the variations in the natural abundance of nitrogen isotopes of plant and soil components. Plant and Soil?412, 453-464.
[44]?Wang C, Liu DW, Luo WT, Fang YT, Wang XB, Lü XT, Jiang Y, Han XG, Bai E*, 2016. Variations in leaf carbon isotope composition along an arid and semi-arid grassland transect in northern China. Journal of Plant Ecology 9, 576-585.
[45]?Feng J, Turner BL, Lü XT, Chen Z, Wei K, Tian JH, Wang C, Luo WT, Chen LJ*, 2016. Phosphorus transformations along a large-scale climosequence in arid and semiarid grasslands of northern China. Global Biogeochemical Cycles?30, 1264-1275.
[46]?Luo WT, Dijkstra FA, Bai E, Feng J, Lü XT, Wang C, Wu HH, Li MH, Han XG*, Jiang Y*, 2016. A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China. Biogeochemistry?127, 141-153.
[47]?Wang XB, Van Nostrand JD, Deng Y, Lü XT, Wang C, Zhou JZ, Han XG*, 2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS microbiology ecology?91, fiv133.
[48]?Lü MK, Xie JS*, Wang C, Guo JF, Wang M, Liu X, Chen Y, Chen GS, Yang YS, 2015. Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China. Biology and Fertility of Soils?51, 857-867.
[49]?Luo WT, Elser JJ, Lü XT, Wang ZW, Bai E, Yan C, Wang C, Li MH, Zimmermann NE, Han XG, Xu ZW, Li H, Wu Y, Jiang Y*, 2015b. Plant nutrients do not covary with soil nutrients under changing climatic conditions. Global Biogeochemical Cycles?29, 1298-1308.
[50]?Wang C, Wang XB, Liu D, Wu HH, Lü XT, Fang YT, Cheng WX, Luo WT, Jiang P, Shi J, Yin H, Zhou JZ, Han XG*, Bai E*, 2014. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications?5, 4799.
[51]?楊靜怡,王旭,孫立飛,王超*,白娥. 氮磷添加對長白山溫帶森林土壤微生物群落組成和氨基糖的影響。應用生態(tài)學報,2020,31(6):1948-1956
[52]?范珍珍, 王鑫, 王超*, 白娥. 整合分析氮磷添加對土壤酶活性的影響. 應用生態(tài)學報. 2018, 29(4): 1266-1272.
[53]?候建峰, 呂曉濤, 王超, 王朋*.中國北方草地呼吸的空間變異及成因. 應用生態(tài)學報. 2014, 25(10):2840-2846.
[54]?王超, 黃蓉, 楊智杰*, 劉強, 陳光水等.萬木林保護區(qū)柑橘和錐栗土壤呼吸的比較研究.應用生態(tài)學報, 2012, 32(6): 1469-1475;
[55]?王超, 黃群斌, 楊智杰*, 黃蓉. 陳光水等.杉木人工林不同深度土壤CO2通量初步研究. 生態(tài)學報, 2011,31(19): 5711-5719; 2011.10.08
[56]?王超, 楊智杰*, 陳光水,范躍新,劉強等. 萬木林保護區(qū)毛竹林土壤呼吸特征及影響因素.應用生態(tài)學報, 2011, 22(5): 1212-1218; 2011.05.15
[57]?劉強,王超,楊智杰*,陳光水,黃錦學,黃蓉,田浩. 福建建甌萬木林柑橘與錐栗凋落物數(shù)量、組成及動態(tài). 亞熱帶資源與環(huán)境學報. 2011, 6(4):29-34;
[58]?王超, 楊智杰*, 黃蓉, 劉強, 楊玉盛等. 中亞熱帶人工經(jīng)濟林土壤有機碳含量及分布. 亞熱帶資源與環(huán)境學報. 2011, 6(2):36-41;
[59]?黃蓉, 王超, 楊智杰*, 陳光水等.萬木林青年和老齡常綠闊葉林喬木層碳貯量分配特征. 亞熱帶資源與環(huán)境學報. 2011, 6(2):29-35.
[60]?王超, 楊智杰*, 陳光水, 楊玉盛等. 土壤垂直剖面的CO2通量研究.亞熱帶資源與環(huán)境學報. 2010, 5(4): 85-92; 2010.12.15

